On rappelle que la série géométrique de terme général x^n est convergente pour $x \in]-1;1[$, et que

$$S(x) = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}.$$

La fonction S ainsi définie sur]-1,1[est de classe C^{∞} et, pour tout $k\in\mathbb{N},\,S^{(k)}$ est définie sur]-1,1[par

$$S^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)...(n-k+1)x^{n-k} = \frac{k!}{(1-x)^{k+1}}$$

1. Démontrer que pour tout $x \in]-1,1[$ et pour tout $k \in \mathbb{N},$

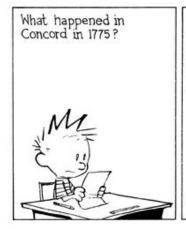
$$\sum_{n=k}^{+\infty} \binom{n}{k} x^n = \frac{x^k}{(1-x)^{k+1}}.$$

2. Soit $p \in]0, \frac{2}{3}[$. Dans un pays, la probabilité qu'une famille ait exactement n enfants est notée q_n et pour $n \in \mathbb{N}^*$

$$q_n = \frac{1}{2}p^n.$$

De plus, la probabilité, à chaque naissance, d'avoir une fille (ou un garçon) est $\frac{1}{2}$.

- (a) Calculer la probabilité q qu'une famille ait au moins un enfant.
- (b) Calculer la probabilité q_0 qu'une famille n'ait aucun enfant.
- (c) Soient $n \in \mathbb{N}^*$ et $k \in [0, n]$. On considère une famille de n enfants ; calculer la probabilité pour que cette famille ait exactement k filles.
- (d) Soit $k \in \mathbb{N}^*$, calculer la probabilité pour qu'une famille ait exactement k filles.
- (e) Calculer la probabilité pour qu'une famille n'ait aucune fille.



LET'S BE HONEST. YOU'RE

asking ME aBout concord?

I RELY ON THE BUS DRIVER

TO FIND MY OWN HOUSE FROM

HERE. CONCORD COULD BE

ON NEPTUNE FOR ALL I KNOW.

AND WHAT HAPPENED 220 YEARS

ago?? I'M A Kid. I don't

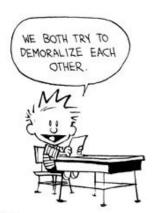
KNOW WHAT'S GOING ON NOW.

I don't Have a SHRED OF

CONTEXT FOR ANY OF THIS.

It'S HOPELESS, MISS WORMWOOD,

HOPELESS



HERST

Exercice facultatif.

Soit p un entier naturel fixé. Pour tout entier naturel n non nul, on pose

$$u_n = \frac{1}{\binom{n+p}{n}}.$$

1. Montrer que si p=0 ou si p=1 la série de terme général u_n diverge.

On suppose dans toute la suite que p est supérieur ou égal à 2 et on pose

$$S_n = \sum_{k=1}^n u_k.$$

2. (a) Montrer que pour tout $n \in \mathbb{N}$,

$$(n+p+2) u_{n+2} = (n+2) u_{n+1}.$$

(b) En déduire par récurrence sur n que

$$S_n = \frac{1}{p-1} (1 - (n+p+1) u_{n+1})$$

3. On pose pour $n \in \mathbb{N}^*$

$$v_n = (n+p) u_n.$$

- (a) Montrer que la suite (v_n) est décroissante.
- (b) En déduire que la suite (v_n) converge et que sa limite ℓ est positive ou nulle.
- (c) Utiliser le résultat précédent pour montrer que la série de terme général u_n converge et donner sa somme en fonction de p et de ℓ .
- 4. On suppose dans cette question seulement que $\ell \neq 0$.
 - (a) Montrer que

$$u_n \underset{+\infty}{\sim} \frac{\ell}{n}$$

- (b) En déduire une contradiction avec la troisième question.
- 5. Donner la valeur de ℓ et en déduire en fonction de p, la somme de la série de terme général u_n .