DM n°7

Dans tout l'exercice, n désigne un entier naturel supérieur ou égal à 2.

1. (a) Étudier, suivant la parité de n, le tableau de variations de la fonction f définie sur \mathbb{R} par

$$f(x) = x^{n+1} + x^n.$$

- (b) Montrer que dans tous les cas $f\left(-\frac{n}{n+1}\right) < 2$.
- (c) Calculer f(1) et en déduire, suivant la parité de n, le nombre de solutions de l'équation d'inconnue x:

$$x^{n+1} + x^n = 2.$$

- 2. On note $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$
 - (a) Déterminer la matrice P de la forme $\begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix}$ telle que :

$$A \cdot P = P \cdot D$$

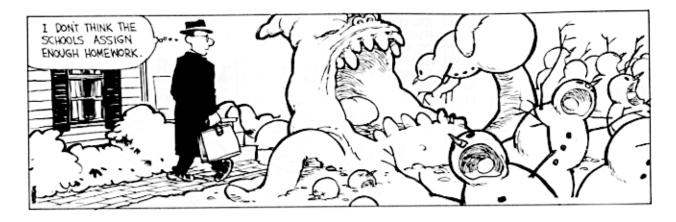
- (b) Montrer que P est inversible et en déduire que $A = P \cdot D \cdot P^{-1}$ et $D = P^{-1} \cdot A \cdot P$.
- 3. On considère l'équation matricielle d'inconnue X matrice carrée de taille 2:

$$(E_n) \quad X^{n+1} + X^n = A$$

(a) Montrer que la résolution de cette équation peut se ramener à la résolution de l'équation d'inconnue Y matrice carrée de taille 2:

$$(E_n') \quad Y^{n+1} + Y^n = D$$

- (b) Soit Y une solution de $(E'_n).$ On pose $Y=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$
 - i. Montrer que $D \cdot Y = Y \cdot D$.
 - ii. En déduire que b = c = 0.
 - iii. Quelle sont les valeurs possibles de a?
 - iv. Discuter suivant les valeurs de n, le nombre de solutions de l'équation (E_n) .
- (c) On note α la solution négative de l'équation numérique $x^4 + x^3 = 2$. Déterminer les solutions de l'équation (E_3) à l'aide de α .



Exercice facultatif.

Partie 1 : Algèbre

Le but de la première partie est de calculer les puissances successives de la matrice :

$$M(a) = \begin{pmatrix} 1 - 2a & a & a \\ a & 1 - 2a & a \\ a & a & 1 - 2a \end{pmatrix}$$

où a représente un nombre réel.

- 1. Montrer que, pour tous réels a, b, on a : M(a) M(b) = M(a + b 3ab).
- 2. Montrer que si $a \neq 1/3$ il existe alors un réel b tel que a + b 3ab = 0. En déduire que si $a \neq 1/3$ alors la matrice M(a) est inversible.

Calculer $[M(1/3)]^2$ et en déduire que M(1/3) n'est pas inversible.

3. Montrer qu'il y a un unique réel a_0 non nul, tel que :

$$\left[M(a_0)\right]^2 = M(a_0)$$

4. On considère les matrices :

$$P = M(a_0)$$
 et $Q = I - P$

- où I désigne la matrice identité d'ordre 3.
- (a) Montrer que pour tout a, il existe un réel α , que l'on exprimera en fonction de a, tel que :

$$M(a) = P + \alpha Q$$

- (b) Calculer P^2 , QP, PQ, Q^2 .
- (c) Pour tout entier naturel n, non nul, montrer que $[M(a)]^n$ s'écrit $x_n P + y_n Q$ avec x_n et y_n des réels.
- (d) Expliciter alors la matrice $[M(a)]^n$.

Partie 2: Évolution d'un titre boursier au cours du temps.

Dans la suite de l'exercice, on suppose que $a \in \left]0, \frac{2}{3}\right[$.

1. On définit des suites $(p_n)_{n\in\mathbb{N}^*}$, $(q_n)_{n\in\mathbb{N}^*}$, $(r_n)_{n\in\mathbb{N}^*}$ par leur premier terme p_1, q_1, r_1 , et les relations de récurrence :

$$\begin{cases} p_{n+1} = (1-2a)p_n + aq_n + ar_n \\ q_{n+1} = ap_n + (1-2a)q_n + ar_n \\ r_{n+1} = ap_n + aq_n + (1-2a)r_n \end{cases}$$

- (a) Exprimer p_n , q_n , r_n en fonction de n, p_1 , q_1 , r_1 .
- (b) Étudier la convergence de ces suites.
- 2. Dans une bourse de valeurs, un titre donné peut monter, rester stable, ou baisser. Dans un modèle mathématique, on considère que :
 - le premier jour le titre est stable;
 - si un jour n, le titre monte, le jour n + 1, il montera avec la probabilité 2/3, restera stable avec la probabilité 1/6, et baissera avec la probabilité 1/6;
 - si un jour n, le titre est stable, le jour n+1, il montera avec la probabilité 1/6, restera stable avec la probabilité 2/3, et baissera avec la probabilité 1/6;
 - si un jour n, le titre baisse, le jour n+1, il montera avec la probabilité 1/6, restera stable avec la probabilité 1/6, et baissera avec la probabilité 2/3.

On note M_n (respectivement S_n , respectivement B_n) l'événement "le titre donné monte (respectivement reste stable, respectivement baisse) le jour n".

(a) Exprimer les probabilités de hausse, de stabilité, et de baisse au jour n+1 en fonction de ces mêmes probabilités au jour n.

2

- (b) En déduire les probabilités de hausse, de stabilité, et de baisse au jour n.
- (c) Quelles sont les limites de ces probabilités lorsque n tend vers l'infini ?