Corrigé du DM n°4

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^{2x} + 1}$

1. (a) On a pour tout réel $x : \text{si } x \in D_f, -x \in D_f$ et

$$f(-x) = \frac{e^{-x}}{e^{-2x} + 1} = \frac{\frac{1}{e^x}}{\frac{1}{e^{2x}} + 1} = \frac{e^x}{1 + e^{2x}} = f(x)$$

Donc f est paire.

(b) f est dérivable sur \mathbb{R}

$$f'(x) = \frac{e^x (e^{2x} + 1) - e^x e^{2x} 2}{(e^{2x} + 1)^2} = \frac{e^x - e^{3x}}{(e^{2x} + 1)^2}$$
$$= \frac{e^x}{(e^{2x} + 1)^2} (1 - e^{2x})$$

x	$-\infty$		0		$+\infty$
$1 - e^{2x}$		+	0	_	
f'(x)		+	0	_	
f(x)	0	7	$\frac{1}{2}$	7	0

En
$$-\infty$$
: $f(x) = \frac{e^x}{e^{2x} + 1} \xrightarrow[x \to -\infty]{} 0$.
En $+\infty$, on a par symétrie $f(x) \xrightarrow[x \to +\infty]{} 0$.

(c) On étudie les variations de la différence : g(x) = f(x) - x. g est dérivable sur \mathbb{R} et g'(x) = f'(x) - 1.

Sur \mathbb{R}^- , on a f(x) > 0 donc f(x) > x et f(x) = x n'y a pas de solution.

Sur \mathbb{R}^+ , on a $f'(x) \leq 0$ donc g'(x) < 0.

On a donc g qui est continue et strictement décroissante sur \mathbb{R}^+ , donc g est une bijection de \mathbb{R}^+ dans $\lim_{x \to +\infty} g(x), g(0) =]-\infty, 1/2].$

Comme $0 \in]-\infty, 1/2]$, alors d'après le théorème de la bijection l'équation g(x) = 0 a une unique solution ℓ sur \mathbb{R}^+ .

Conclusion : L'équation $f(\ell) = \ell$ a une unique solution ℓ sur \mathbb{R} .

(d) g(1/2) = f(1/2) - 1/2 < 0 donc $g(0) = 1/2 \ge g(\ell) \ge g(1/2)$ et comme g est strictement décroissante sur \mathbb{R}^+ et qu'ils en sont éléments.

Conclusion: $0 \le \ell \le \frac{1}{2}$.

(e) Pour $x \le 0$ on a |f'(x)| = f'(x) et

$$|f'(x)| - f(x) = \frac{e^x - e^{3x}}{(e^{2x} + 1)^2} - \frac{e^x}{1 + e^{2x}} = \frac{e^x - e^{3x} - e^x (e^{2x} + 1)}{(e^{2x} + 1)^2}$$
$$= \frac{-2e^{3x}}{(e^{2x} + 1)^2} \le 0$$

Pour $x \ge 0$ on a |f'(x)| = -f'(x) et

$$|f'(x)| - f(x) = -\frac{e^x - e^{3x}}{(e^{2x} + 1)^2} - \frac{e^x}{1 + e^{2x}} = \frac{-e^x + e^{3x} - e^x (e^{2x} + 1)}{(e^{2x} + 1)^2}$$
$$= \frac{-2e^x}{(e^{2x} + 1)^2} \le 0$$

Et comme f est maximale en 0, on a bien

Conclusion: pour tout $x \in \mathbb{R}$, $|f'(x)| \le f(x) \le f(0) = \frac{1}{2}$.

2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

(a) Pour $n \in \mathbb{N}$, on définit la proposition $\mathcal{P}(n)$: " $u_n \in [0, 1/2]$."

<u>Initialisation</u>: $u_0 = 0$ donc $u_0 \in [0, 1/2], \mathcal{P}(0)$ est donc vraie.

<u>Hérédité</u>: On suppose que pour un $n \in \mathbb{N}$ fixé, la proposition $\mathcal{P}(n)$ est vraie.

D'après l'hypothèse de récurrence, $u_n \in [0, 1/2]$, alors, d'après la question 1.(c), on a $f(u_n) \in [0, 1/2]$.

Donc $u_{n+1} \in [0, 1/2], \mathcal{P}(n+1)$ est donc vraie.

Conclusion: Pour tout $n \in \mathbb{N}$, $u_n \in [0, 1/2]$.

(b) f est continue sur [0,1/2] et dérivable sur l'intervalle]0,1/2[. De plus, d'après les précédentes questions, $u_n \in [0,1/2]$, $l \in [0,1/2]$ et $|f'(x)| \leq \frac{1}{2}$ pour tout x de [0,1/2]. Donc, d'après l'inégalité des accroissements finis

$$|f(u_n) - f(\ell)| = |u_{n+1} - \ell| \le \frac{1}{2} |u_n - \ell|$$

Conclusion: Pour tout $n \in \mathbb{N}$, $|u_{n+1} - \ell| \le \frac{1}{2}|u_n - \ell|$.

(c) Pour $n \in \mathbb{N}$, on définit la proposition $\mathcal{P}(n)$: " $|u_n - \ell| \leq \frac{1}{2^{n+1}}$."

Initialisation: $|u_0 - \ell| = \ell \le \frac{1}{2} = \frac{1}{2^{0+1}}$, $\mathcal{P}(0)$ est donc vraie.

<u>Hérédité</u>: On suppose que pour un $n \in \mathbb{N}$ fixé, la proposition $\mathcal{P}(n)$ est vraie.

D'après l'hypothèse de récurrence, $|u_n - \ell| \le \frac{1}{2^{n+1}}$ alors, $|u_{n+1} - \ell| \le \frac{1}{2}|u_n - \ell| \le \frac{1}{2}\frac{1}{2^{n+1}}$. $\mathcal{P}(n+1)$ est donc vraie.

Conclusion: Pour tout $n \in \mathbb{N}$, $|u_n - \ell| \le \frac{1}{2^{n+1}}$.

(d) Alors comme $\left|\frac{1}{2}\right| < 1$ on a $\left(\frac{1}{2}\right)^{n+1} \xrightarrow[n \to +\infty]{} 0$ et par encadrement $|u_n - \ell| \xrightarrow[n \to +\infty]{} 0$ et donc

Conclusion: la suite (u_n) converge vers ℓ .

(e) u_n donnera une valeur approvchée de ℓ à 10^{-3} près si $|u_n - \ell| \le 10^{-3}$ ce qui sera réalisé si $\frac{1}{2^{n+1}} \le 10^{-3}$

```
import numpy as np
u=0
p=1/2
while p>10**(-3) :
    p=p/2
    u=np.exp(u)/(1+np.exp(2*u))
print(u)
```

Exercice facultatif.

On considère l'application φ défini sur \mathbb{R}_+ par :

$$\left\{ \begin{array}{l} \varphi \left(x \right) = 1 - x^{2} \ln \left(x \right) \quad \mathrm{si} \ x > 0 \\ \varphi \left(0 \right) = 1 \end{array} \right.$$

1. On a

$$\varphi(x) = 1 - x^2 \ln(x) \underset{x \to +\infty}{\longrightarrow} -\infty$$

$$\frac{\varphi\left(x\right)}{r} = \frac{1}{r} - x \ln\left(x\right) \underset{x \to +\infty}{\longrightarrow} -\infty$$

On a donc une branche parabolique verticale en $+\infty$.

2. φ est continue sur $]0,+\infty[$ comme produit de fonctions continues. De plus, par croissance comparée en 0, on a

$$\varphi(x) = 1 - x^2 \ln(x) \underset{x \to 0^+}{\longrightarrow} 1 = \varphi(0)$$

 φ est continue en 0.

Conclusion: φ est continue sur \mathbb{R}_+ .

3. φ est dérivable sur \mathbb{R}_+^* comme produit de fonctions dérivables sur \mathbb{R}_+^* . Pour x>0, on a

$$\varphi'(x) = -2x \ln(x) - \frac{x^2}{x} = -x (2 \ln(x) + 1)$$

4. En 0, on calcule le taux d'accroissement : pour x > 0

$$\frac{\varphi\left(x\right)-\varphi\left(0\right)}{x-0}=-x\ln\left(x\right)\underset{x\rightarrow0^{+}}{\longrightarrow}0\quad\text{ par croissance compar\'ee}.$$

Conclusion : φ est dérivable en 0 et $\varphi'(0) = 0$. Sa courbe a un tangente horizontale en 0.

5. On obtient le tableau de variations suivant

x	0		$1/\sqrt{e}$		$+\infty$
$2\ln(x) + 1$		_	0	+	
-x		_		_	
$\varphi'(x)$	0	+	0	_	
$\varphi\left(x\right)$	1	7	$1 + \frac{1}{2e}$	\searrow	$-\infty$

6. φ est strictement positive sur $[0,1/\sqrt{e}]$, il n'y a donc pas de solution à $\varphi(x)=0$ sur cet intervalle. φ est continue et strictement décroissante sur $]1/\sqrt{e},+\infty[$ dans $]-\infty,1+1/(2e)[$. D'après le théorème de la bijection monotone, φ est bijective de $]1/\sqrt{e},+\infty[$ dans $]-\infty,1+1/(2e)[$. Comme $0\in]-\infty,1+1/(2e)[$, il existe une unique solution α à $\varphi(x)=0$. De plus,

$$\varphi\left(\sqrt{2}\right) = 1 - 2\ln\left(\sqrt{2}\right) = 1 - \ln\left(2\right) > 0 \quad \text{et } \varphi\left(2\right) = 1 - 4\ln\left(2\right) < 0$$

$$\varphi(2) < \varphi(\alpha) < \varphi(\sqrt{2}).$$

Comme φ est strictement décroissante sur $]1/\sqrt{e},+\infty[$ et que $\sqrt{2},~\alpha$ et 2 en sont éléments, on obtient

$$\sqrt{2} < \alpha < 2$$
.

Conclusion : il existe un unique réel α tel que $\varphi(\alpha) = 0$ et $\sqrt{2} < \alpha < 2$.

7. On considère les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par : $a_0=\sqrt{2}$ et $b_0=2$.

$$\forall n \geq 0, \quad \text{ si } \quad \varphi\left(a_n\right)\varphi\left(\frac{a_n+b_n}{2}\right) < 0 \quad \text{ alors } \quad a_{n+1} = a_n \quad \text{ et } \quad b_{n+1} = \frac{a_n+b_n}{2}$$

$$\forall n \geq 0$$
, si $\varphi(a_n) \varphi\left(\frac{a_n + b_n}{2}\right) \geq 0$ alors $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = b_n$

On reconnait dans ce programme la méthode de dichotomie.

Pour écrire un programme en Python calculant a_7 et b_7 , il y a simplement à suivre la définition mathématique donnée, en plaçant les termes successifs des suites a et b dans a et b, les réaffectations pour $a_{n+1}=a_n$ et $b_{n+1}=b_n$ étant inutiles.

```
import numpy as np
def phi(x):
    return 1-x**2*np.log(x)
a=np.sqrt(2)
b=2
for k in range(1,8):
    t=(a+b)/2
    if phi(a)*phi(t)<0:
        b=t
    else :
        a=t
print(a)
print(b)</pre>
```